

Eric S. Atchison
Mississippi Institutions of Higher Learning
MBUG 2015
September 14, 2015

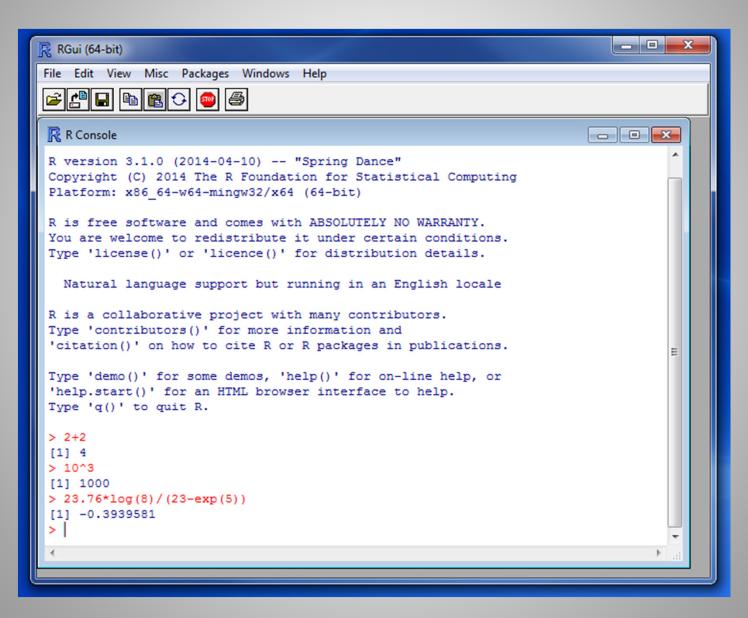
Agenda

- What is R?
- Where to get R?
- Getting Started
- Loading Data
- Describing Data
- Plotting Data

- T-Tests
- ANOVA
- Regression Modeling
- Test for Proportion Differ.
- Merging data files
- Resources

What is R?

• R is a FREE language and environment for statistical computing and graphics

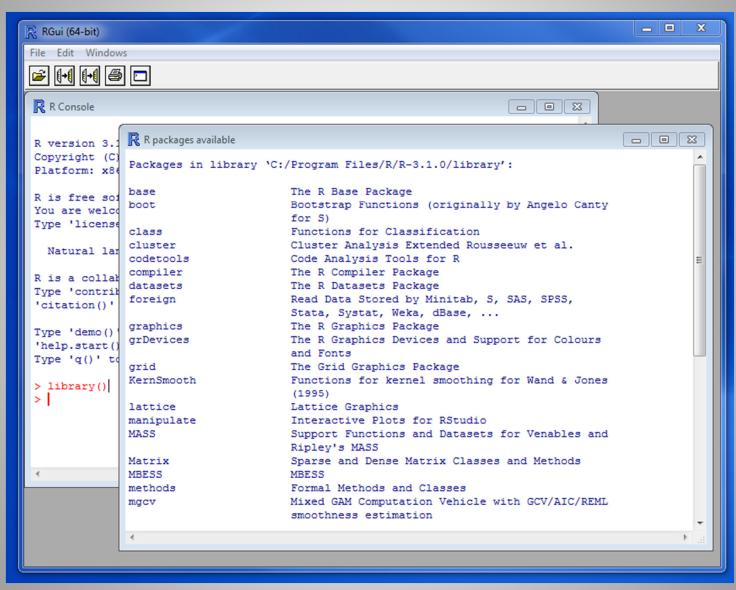

 Available for multiple platforms (i.e. Windows, Mac, Linux)

More than 2,000 packages available to broaden your capabilities

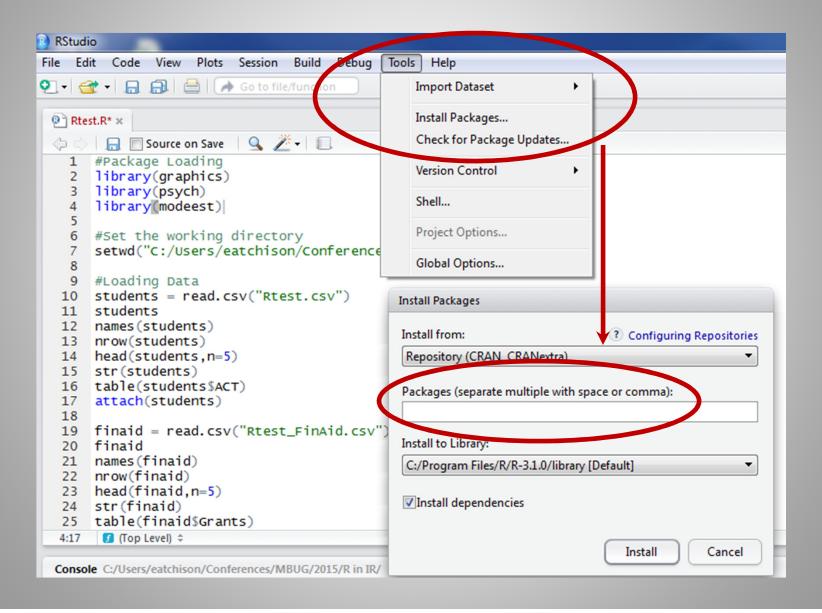
Where to get R?

- www.r-project.org
- Also consider downloading:
 - R Studio (http://www.rstudio.com)
 - Includes a console, syntax-highlighting editor that supports direct code execution, as well as tools for plotting, history, debugging and workspace management.
 - R Commander: (http://www.rcommander.com)
 - Enables access a selection of commonly-used R commands using a simple interface that should be familiar to most computer users.

Getting Started: Calculator


Getting Started: Useful Packages for IR

Package	Description		
foreign	Contains functions to read SPSS files		
gdata	Contains functions to read Excel spreadsheets		
ggplot2	Package for creating nice looking graphics http://had.co.nz/ggplot2		
psych	Package contains lots of useful functions for descriptive statistics		
rcmdr	R Commander is a graphical interface for R		
RMySQL	Package for interfacing with MySQL databases		
RODBC	Package contains functions to read and write data from ODBC databases (e.g. Oracle, MS SQLServer)		
RSQLite	Package for the creation and editing of SQLite databases embedded within R		
stats	Package contains functions for statistical calculations and random number generation		


Getting Started: Basic Commands

- search(): Returns all packages that are currently attached to the system
- library(package_name) : Loads the requested package
- ls(package_name) : Returns a list of functions in a particular package
- ?function_name : loads the help file associated with a function

Getting Started: Loading Packages

Getting Started: Loading Packages

Loading Data: CSV Files

RStudio

Plots Session Build

Rtest.R × Test_ANOVA.R × Rtest.R ×

students = read.csv("Rtest.csv")

Console C:/Users/eatchison/Conferences/MBUG/2014/

Student Gender Ethnicity ACT GPA Retained

1 17 2.00 2 18 2.10

3 18 2.20 1 18 2.50

3 19 2.20

1 19 2.10 2 20 2.10 1

0

#Loading Data

students
[7] (Top Level) \$

> students

- > students = read.csv("Rtest.csv")
- > students

- > names(students)
- > nrow(students)

```
> names(students)
[1] "Student" "Gender" "Ethnicity" "ACT" "GPA" "Retained"
> nrow(students)
[1] 50
```

> str(students)

```
> str(students)
'data.frame': 50 obs. of 4 variables:
  $ Student: int 1 2 3 4 5 6 7 8 9 10 ...
  $ Gender : Factor w/ 2 levels "F","M": 2 2
  $ ACT : int 16 16 17 18 19 19 21 23 24
  $ GPA : num 1.8 1.9 2 2.2 2.5 2.8 3.2
```

Loading Data: Sampling

```
> sample.int(50,size=10)
```

```
> sample.int(30,size=10)
```

> sample.int(20,size=10)

```
> #Sampling from Data File
> sample.int(50,size=10)
[1] 33 16 46 36 21 19 14 38 49 22
> sample.int(30,size=10)
[1] 7 11 13 21 14 1 22 25 24 23
> sample.int(20,size=10)
[1] 19 4 9 15 3 20 14 2 10 8
```

Describing Data: Frequency Tables

One-Way Frequency Table:

- > table(students\$gender)
- > table(students\$ACT)

```
> table(students$Gender)

F M
25 25
> table(students$ACT)

16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32
3 3 7 7 6 2 2 2 3 4 1 2 4 2 1 1
```

Two-way Frequency Table:

> table1 = table(students\$gender,students\$ACT)

```
> table(students$Gender,students$ACT)

16 17 18 19 20 21 22 23 24 25 26 27 28 30 31 32
F 0 1 3 3 4 0 1 1 1 3 1 1 3 1 1 1
M 3 2 4 4 2 2 1 1 2 1 0 1 1 1 0 0
```

Describing Data: Proportions

Cell percentages: prop.table(table1)

Row percentages: prop.table(table1, 1)

Column percentages: prop.table(table1, 2)

```
prop.table(table1)
              20
                21
                    22 23 24
                             25
                                26
 > prop.table(table1,1)
              20 21 22 23 24 25
                                26
F 0.00 0.04 0.12 0.12 0.16 0.00 0.04 0.04 0.04 0.12 0.04 0.04 0.12 0.04 0.04 0.04
> prop.table(table1,2)
                             20
 F 0.0000000 0.3333333 0.4285714 0.4285714 0.6666667 0.0000000 0.5000000 0.5000000
M 1.0000000 0.6666667 0.5714286 0.5714286 0.3333333 1.0000000 0.5000000 0.5000000
```

Describing Data: Mean & SD

- > mean(students\$ACT, na.rm=TRUE)
- > sd(students\$ACT, na.rm=TRUE)

```
> mean(students$ACT, na.rm=TRUE)
[1] 21.94
> sd(students$ACT, na.rm=TRUE)
[1] 4.409683
```

> summary(students\$ACT)

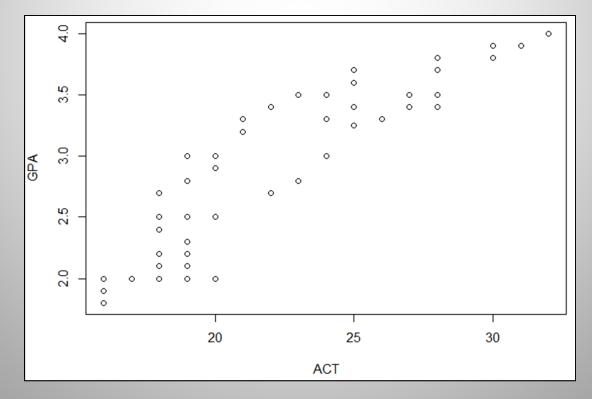
```
> summary(students$ACT)
Min. 1st Qu. Median Mean 3rd Qu. Max.
16.00 18.25 20.00 21.94 25.00 32.00
```

Describing Data: Descriptives

- Using the "psych" package provides the *describe* and *describeBy* functions
- > describe(students\$ACT)

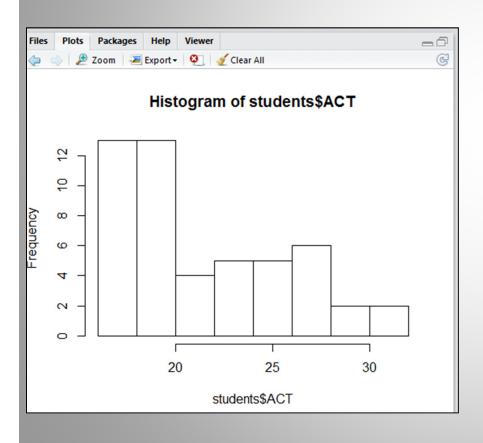
```
> describe(students$ACT)
  vars n mean sd median trimmed mad min max range skew kurtosis se
1  1 50 21.94 4.41  20  21.6 4.45 16 32 16 0.59 -0.85 0.62
```

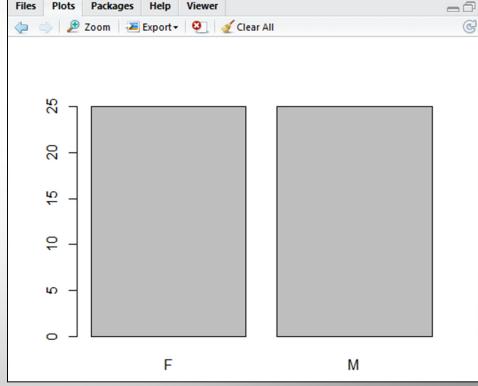
> describeBy(students\$ACT, students\$Gender)


Describing Data: Mode

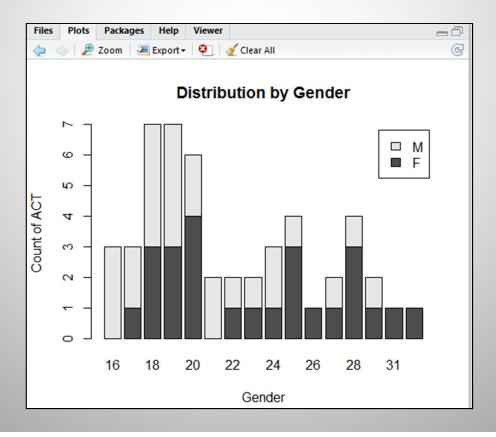
- mode() function returns information about data type instead of the statistical mode;
- Add-on package modeest that adds a mfv() function (most frequent value) to find the statistical mode
- mfv(ACT)
- mfv(GPA)

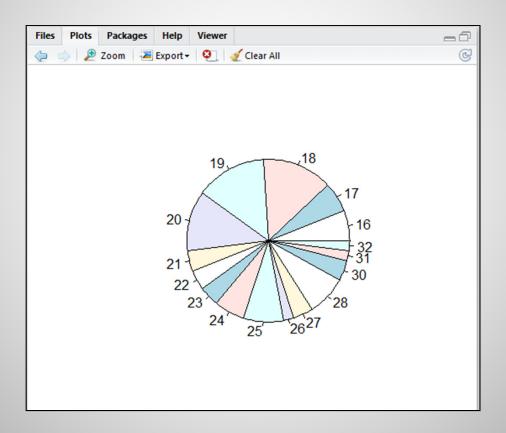
```
> mfv(ACT)
[1] 19
> mfv(GPA)
[1] 2
```


Describing Data: Correlations

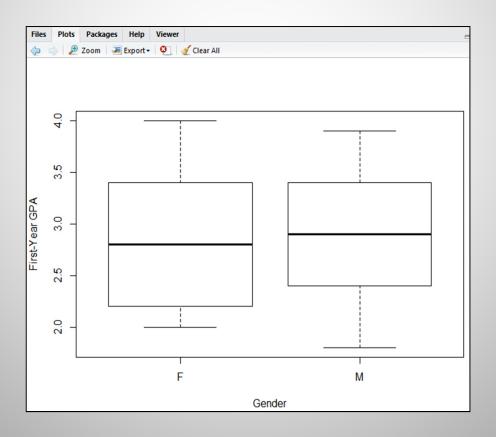

- cor(students\$ACT, students\$GPA, use="complete")
 - 0.8985408
- plot(students\$ACT,students\$GPA, xlab="ACT", ylab="GPA")

Plotting Data: Bar Charts

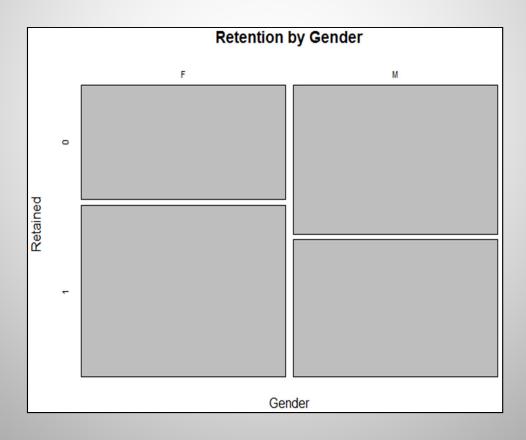

- > hist(students\$ACT)
- > barplot(table(students\$Gender))


Plotting Data: Stacked Bar Charts

> barplot(table1, main='Distribution by Gender', xlab='Gender', ylab='Count of ACT', legend=rownames(table1))


Plotting Data: Pie Charts

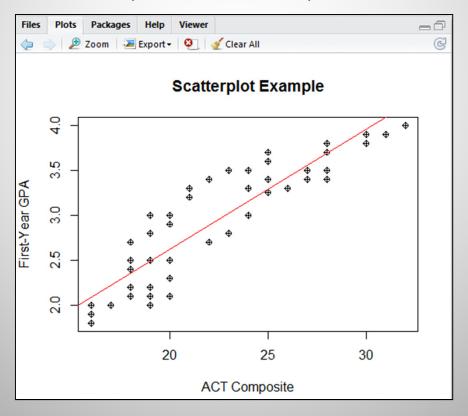
> pie(table(students\$ACT))


Plotting Data: Box Plots

> boxplot(GPA~Gender,data=students, xlab="Gender", ylab="First-Year GPA")

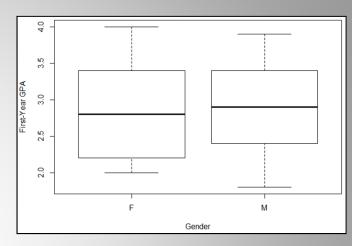
Plotting Data: Mosaic Plots

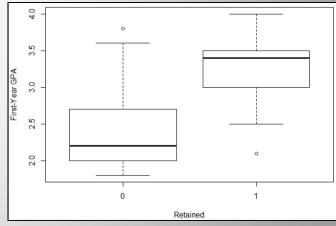
> mosaicplot(~Gender + Retained, data=students, main="Retention by Gender")


Plotting Data: Scatter Plots

> plot(ACT, GPA, main="Scatterplot Example", xlab="ACT Composite", ylab="First-Year GPA", pch=10)

Plotting Data: Adding Fit Lines


- > plot(ACT, GPA, main="Scatterplot Example", xlab="ACT Composite", ylab="First-Year GPA", pch=10)
- > abline(lm(ACT~GPA), col="red")



T-Tests: Independent & Paired Samples

> t.test(GPA~Gender)

> t.test(GPA~Retained)

Paired Samples T-Test:

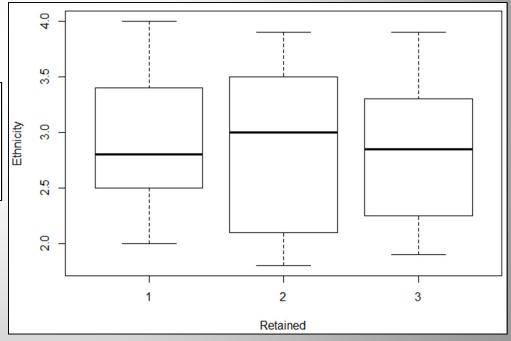
> t.test(pretest,posttest,paired=TRUE)

ANOVA

- > Ex_anova <- aov(GPA~Ethnicity, students)
- > anova(Ex_anova)

> boxplot(GPA~Ethnicity,data=students, xlab="Retained",

ylab="Ethnicity")

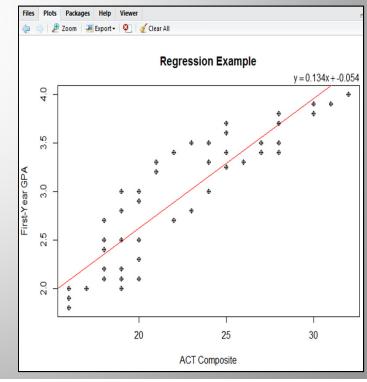

Analysis of Variance Table

Response: GPA

Df Sum Sq Mean Sq F value Pr(>F)

Ethnicity 1 0.0572 0.05716 0.1316 0.7184

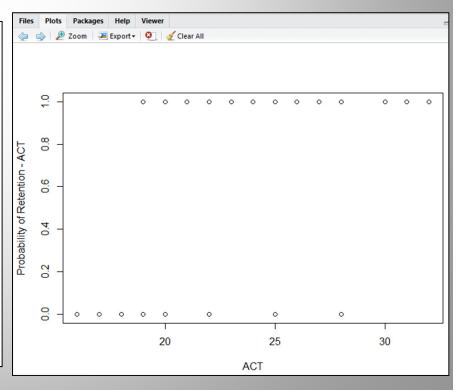
Residuals 48 20.8489 0.43435


Regression Modeling: Linear

- > mlr <- lm(GPA~ACT, students)
- > summary(mlr)
- > lm_coef<-round(coef(mlr),3)

> mtext(bquote(y==.(lm_coef[2])*x + .(lm_coef[1])),

adj=1,pad j=0)


```
> mlr <- lm(GPA~ACT, students)</pre>
> summary(mlr)
call:
lm(formula = GPA ~ ACT, data = students)
Residuals:
    Min
             1Q Median
                                    Max
-0.5179 -0.2096 -0.1007 0.2489 0.5486
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.053821
                        0.206663
                                   -0.26
                                            0.796
                                   14.46
                                           <2e-16 ***
ACT
             0.133583
                        0.009238
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2852 on 48 degrees of freedom
Multiple R-squared: 0.8133, Adjusted R-squared: 0.8094
F-statistic: 209.1 on 1 and 48 DF, p-value: < 2.2e-16
```


Regression Modeling: Logistic

- > logreg <- glm(cbind(Retained)~ +ACT, family=binomial)
- > summary(logreg)
- > plot(ACT,Retained,xlab="ACT",ylab="Probability of Retention - ACT")

```
> summary(logreg)
call:
glm(formula = cbind(Retained) ~ +ACT, family = binomial)
Deviance Residuals:
             10 Median
-2.6486 -0.6719 0.1362 0.6241
                                   1.5703
coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -10.1044
                        2.8311 -3.569 0.000358 ***
             0.4851
ACT
                        0.1374 3.530 0.000415 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ''
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 68.994 on 49 degrees of freedom
Residual deviance: 43.862 on 48 degrees of freedom
AIC: 47.862
Number of Fisher Scoring iterations: 5
```


Test for Proportion Differences

	Fall 2009	Fall 2013
First-Time Freshmen	367	385
2 nd Year Retained	213	259
% Retained	58.0%	67.3%

> prop.test(x=c(213,259), n=c(367,385))

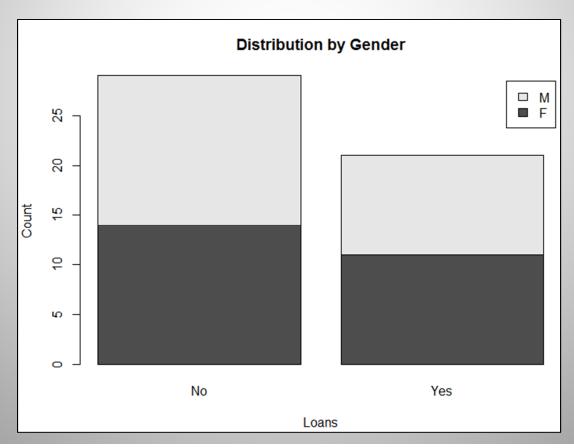
2-sample test for equality of prop. with continuity correction data: c(213, 259) out of c(367, 385)

X-squared = 6.4667, df = 1, p-value = 0.01099

Merging Data Files

> stud_finaid <- merge(students, finaid, by="ID")

Default setting of the merge() function drops all unmatched cases. If you want to keep all cases in the new data set, include the option all=TRUE


> stud_finaid <- merge(students, finaid, by="ID",all=TRUE)

To keep unmatched cases only from students, use the all.x option. To keep unmatched cases only from finaid, use the all.y option

> stud_finaid<- merge(students, finaid, by="ID", all.x=TRUE)

Merging Data Files

- > table2 = table(stud_finaid\$Gender,stud_finaid\$Loans)
- > barplot(table2, main='Distribution by Gender', xlab='Loans', ylab='Count',legend=rownames(table2))

Resources

- http://cran.r-project.org/doc/manuals/R-intro.html
- http://www.statmethods.net/interface/help.html
- http://www.r-tutor.com/
- http://www.r-bloggers.com/
- http://jason.bryer.org/
- http://stackoverflow.com/questions/tagged/r
- http://oit.utk.edu/scc/RforSAS&SPSSusers.pdf
- http://cran.r-project.org/doc/contrib/Short-refcard.pdf
- http://cran.r-project.org/doc/contrib/Verzani-SimpleR.pdf

Contact Information

Eric Atchison

601-432-6288

eatchison@mississippi.edu